Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Viruses ; 15(4)2023 04 09.
Article in English | MEDLINE | ID: covidwho-2298657

ABSTRACT

Following the emergence of SARS-CoV-2, cases of pets infected with variants circulating among humans were reported. In order to evaluate the occurrence of SARS-CoV-2 circulation among pets in the Republic of the Congo, we conducted a ten-month study of dogs and cats living in COVID-19-positive households in Brazzaville and neighboring localities. Real-time PCR and the Luminex platform were used to detect SARS-CoV-2 RNA and antibodies to SARS-CoV-2 RBD and S proteins, respectively. Our results show for the first time the simultaneous circulation of several variants of SARS-CoV-2, including viruses from clades 20A and 20H and a putative recombinant variant between viruses from clades 20B and 20H. We found a high seroprevalence of 38.6%, with 14% of tested pets positive for SARS-CoV-2 RNA. Thirty-four percent of infected pets developed mild clinical signs, including respiratory and digestive signs, and shed the virus for about one day to two weeks. These results highlight the potential risk of SARS-CoV-2 interspecies transmission and the benefits of a "One Health" approach that includes SARS-CoV-2 diagnosis and surveillance of viral diversity in pets. This approach aims to prevent transmission to surrounding wildlife as well as spillback to humans.


Subject(s)
COVID-19 , Cat Diseases , Dog Diseases , Animals , Cats , Dogs , Humans , SARS-CoV-2/genetics , Congo/epidemiology , COVID-19/epidemiology , COVID-19/veterinary , COVID-19 Testing , Dog Diseases/diagnosis , Dog Diseases/epidemiology , RNA, Viral/genetics , Seroepidemiologic Studies , Recombination, Genetic
2.
Emerg Infect Dis ; 28(4): 878-880, 2022 04.
Article in English | MEDLINE | ID: covidwho-1708502

ABSTRACT

To determine when severe acute respiratory syndrome coronavirus 2 arrived in Congo, we retrospectively antibody tested 937 blood samples collected during September 2019-February 2020. Seropositivity significantly increased from 1% in December 2019 to 5.3% in February 2020, before the first officially reported case in March 2020, suggesting unexpected early virus circulation.


Subject(s)
COVID-19 , SARS-CoV-2 , Congo/epidemiology , Humans , Retrospective Studies
3.
Vet Sci ; 9(2)2022 Jan 27.
Article in English | MEDLINE | ID: covidwho-1674883

ABSTRACT

We tested 144 pet rabbits sampled in France between November 2020 and June 2021 for antibodies to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by microsphere immunoassay. We reported the first evidence of a natural SARS-CoV-2 infection in rabbits with a low observed seroprevalence between 0.7% and 1.4%.

4.
Vet Rec ; 189(9): e944, 2021 11.
Article in English | MEDLINE | ID: covidwho-1499332

ABSTRACT

BACKGROUND: Domestic pets can contract severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection; however, it is unknown whether the UK B.1.1.7 variant can more easily infect certain animal species or increase the possibility of human-to-animal transmission. METHODS: This is a descriptive case series reporting SARS-CoV-2 B.1.1.7 variant infections in a group of dogs and cats with suspected myocarditis. RESULTS: The study describes the infection of domestic cats and dogs by the B.1.1.7 variant. Two cats and one dog were positive to SARS-CoV-2 PCR on rectal swab, and two cats and one dog were found to have SARS-CoV-2 antibodies 2-6 weeks after they developed signs of cardiac disease. Many owners of these pets had developed respiratory symptoms 3-6 weeks before their pets became ill and had also tested positive for COVID-19. Interestingly, all these pets were referred for acute onset of cardiac disease, including severe myocardial disorders of suspected inflammatory origin but without primary respiratory signs. CONCLUSIONS: These findings demonstrate, for the first time, the ability for pets to be infected by the B.1.1.7 variant and question its possible pathogenicity in these animals.


Subject(s)
COVID-19 , Cat Diseases , Dog Diseases , Myocarditis , Animals , COVID-19/veterinary , Cats , Dogs , Humans , Myocarditis/veterinary , SARS-CoV-2
5.
Vet Med Sci ; 8(1): 14-20, 2022 01.
Article in English | MEDLINE | ID: covidwho-1487524

ABSTRACT

Although there are several reports in the literature of SARS-CoV-2 infection in cats, few SARS-CoV-2 sequences from infected cats have been published. In this study, SARS-CoV-2 infection was evaluated in two cats by clinical observation, molecular biology (qPCR and NGS), and serology (microsphere immunoassay and seroneutralization). Following the observation of symptomatic SARS-CoV-2 infection in two cats, infection status was confirmed by RT-qPCR and, in one cat, serological analysis for antibodies against N-protein and S-protein, as well as neutralizing antibodies. Comparative analysis of five SARS-CoV-2 sequence fragments obtained from one of the cats showed that this infection was not with one of the three recently emerged variants of SARS-CoV-2. This study provides additional information on the clinical, molecular, and serological aspects of SARS-CoV-2 infection in cats.


Subject(s)
COVID-19 , Cat Diseases , Animals , COVID-19/veterinary , Cat Diseases/epidemiology , Cats , France/epidemiology , Pandemics , SARS-CoV-2
6.
Viruses ; 13(9)2021 09 03.
Article in English | MEDLINE | ID: covidwho-1390790

ABSTRACT

Despite the probable zoonotic origin of SARS-CoV-2, only limited research efforts have been made to understand the role of companion animals in SARS-CoV-2 epidemiology. According to recent serological prevalence studies, human-to-companion animal transmission is quite frequent, which led us to consider that the risk of SARS-CoV-2 transmission from animal to human, albeit negligible in the present context, may have been underestimated. In this study, we provide the results of a prospective survey that was conducted to evaluate the SARS-CoV-2 isolation rate by qRT-PCR in dogs and cats with different exposure risks and clinical statuses. From April 2020 to April 2021, we analyzed 367 samples and investigated the presence of SARS-CoV-2 RNA using qRT-PCR. Only four animals tested positive, all of them being cats. Three cats were asymptomatic and one presented a coryza-like syndrome. We describe in detail the infection in two cats and the associated clinical characteristics. Importantly, we obtained SARS-CoV-2 genomes from one infected animal and characterized them as Alpha variants. This represents the first identification of the SARS-CoV-2 Alpha variant in an infected animal in France.


Subject(s)
COVID-19/veterinary , Cat Diseases/virology , Dog Diseases/virology , Animals , COVID-19/epidemiology , COVID-19/transmission , COVID-19/virology , Cat Diseases/epidemiology , Cats , Dog Diseases/epidemiology , Dogs , France/epidemiology , Humans , Male , Pets/virology , Prevalence , Prospective Studies , RNA, Viral , Real-Time Polymerase Chain Reaction/veterinary , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Sequence Analysis, RNA , Virus Shedding
7.
mBio ; 12(1)2021 01 19.
Article in English | MEDLINE | ID: covidwho-1066819

ABSTRACT

Bats host many viruses pathogenic to humans, and increasing evidence suggests that rotavirus A (RVA) also belongs to this list. Rotaviruses cause diarrheal disease in many mammals and birds, and their segmented genomes allow them to reassort and increase their genetic diversity. Eighteen out of 2,142 bat fecal samples (0.8%) collected from Europe, Central America, and Africa were PCR-positive for RVA, and 11 of those were fully characterized using viral metagenomics. Upon contrasting their genomes with publicly available data, at least 7 distinct bat RVA genotype constellations (GCs) were identified, which included evidence of reassortments and 6 novel genotypes. Some of these constellations are spread across the world, whereas others appear to be geographically restricted. Our analyses also suggest that several unusual human and equine RVA strains might be of bat RVA origin, based on their phylogenetic clustering, despite various levels of nucleotide sequence identities between them. Although SA11 is one of the most widely used reference strains for RVA research and forms the backbone of a reverse genetics system, its origin remained enigmatic. Remarkably, the majority of the genotypes of SA11-like strains were shared with Gabonese bat RVAs, suggesting a potential common origin. Overall, our findings suggest an underexplored genetic diversity of RVAs in bats, which is likely only the tip of the iceberg. Increasing contact between humans and bat wildlife will further increase the zoonosis risk, which warrants closer attention to these viruses.IMPORTANCE The increased research on bat coronaviruses after severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) allowed the very rapid identification of SARS-CoV-2. This is an excellent example of the importance of knowing viruses harbored by wildlife in general, and bats in particular, for global preparedness against emerging viral pathogens. The current effort to characterize bat rotavirus strains from 3 continents sheds light on the vast genetic diversity of rotaviruses and also hints at a bat origin for several atypical rotaviruses in humans and animals, implying that zoonoses of bat rotaviruses might occur more frequently than currently realized.


Subject(s)
Chiroptera/virology , Rotavirus Infections/transmission , Rotavirus Infections/virology , Rotavirus/genetics , Zoonoses/transmission , Zoonoses/virology , Animals , COVID-19/transmission , COVID-19/virology , Diarrhea/virology , Genetic Variation , Genome, Viral , Genotype , Horses , Humans , Metagenomics , Middle East Respiratory Syndrome Coronavirus/isolation & purification , Phylogeny , SARS-CoV-2/isolation & purification
8.
One Health ; 11: 100192, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-907097

ABSTRACT

In a survey of household cats and dogs of laboratory-confirmed COVID-19 patients, we found a high seroprevalence of SARS-CoV-2 antibodies, ranging from 21% to 53%, depending on the positivity criteria chosen. Seropositivity was significantly greater among pets from COVID-19+ households compared to those with owners of unknown status. Our results highlight the potential role of pets in the spread of the epidemic.

SELECTION OF CITATIONS
SEARCH DETAIL